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Abstract

Most traditional benchmarks for computer vision focus
on tasks that use a fixed set of labels that are known a priori.
On the other hand, tasks like phrase grounding and refer-
ring expression comprehension make it possible to probe the
model through natural language, which allows us to gain
a more extensive understanding of the model’s visual un-
derstanding capabilities. However, unlike object detection,
these free-form text-conditioned box prediction tasks all op-
erate under the assumption that the text corresponds to ob-
jects that are necessarily present in the image. We show that
results on such benchmarks tend to overestimate the capa-
bilities of models significantly given that models do not nec-
essarily need to understand the context, but merely localize
the named entities. In this work we aim to highlight this
blind spot in model evaluation by proposing a novel task:
Contextual Phrase Detection (CPD). To evaluate it, we re-
lease a human annotated evaluation dataset called TRICD1.
It consists of instances of two image-text pairs with bound-
ing boxes for each of the phrases present in the image. The
pairs are contextually related, but partially contradictory;
i.e. while the images and texts are semantically similar,
each sentence is only depicted in one of the images, but not
the other. Models must predict the relevant bounding boxes
for the phrases in an image if and only if it is in accordance
with the context defined by the full sentence. We benchmark
the performance of several state of the art multi-modal mod-
els on this task in terms of average precision (AP).
Website : https://ashkamath.github.io/TRICD/

1. Introduction

Understanding visual scenes is a fundamental objective
in the field of computer vision. Over the years, several
proxy tasks have been proposed to quantify how well mod-

1Testing Robust Image understanding through Contextual Phrase
Detection (pronounced “tricked”)
∗ indicates equal contribution

Neg: elephant | frisbee
Pos: cat | table | chair

(a) Object detection

Neg: ∅
Pos: cat on a table

(b) Phrase grounding

Neg: white table | brown dog
Pos: black cat | white chair

(c) Phrase detection

Neg: cat on a white chair
Pos: cat on a table

(d) Contextual Phrase Detection

Figure 1. Contextual Phrase Detection (1d) extends previous re-
lated tasks: Like object detection (1a), it evaluates both positives
and negatives; like phrase detection (1c), it has an open vocabu-
lary; and like phrase grounding (1b), the context surrounding the
phrases is important.

els fully grasp the contents of an image from image level
tasks such as classification [13, 31] to dense prediction
tasks such as object detection [19, 33, 39, 59], segmenta-
tion [11,12,17,29] and depth prediction [61]. These bench-
marks provide a valuable north-star for researchers in the
quest to build better visual understanding systems. A limita-
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tion of these traditional computer vision benchmarks, how-
ever, is that they typically restrict their label sets to a fixed
vocabulary of concepts known a priori. This inherently cre-
ates blindspots and biases in the set of capabilities that mod-
els can obtain and be evaluated on.

To relax this rigid formulation, one possibility is to de-
sign benchmarks that leverage natural language to probe
a model’s understanding of a given image in a more nu-
anced manner. One of the earliest such tasks is image
captioning [65], followed by many others such as Visual
Question Answering (VQA) [4, 25, 26, 62], Visual Com-
monsense Reasoning (VCR) [74], Visual Entailment (VE)
[69], inter alia. We are particularly interested in tasks that
probe model’s fine-grained localization capabilities such as
phrase grounding [54] and referring expression comprehen-
sion (REC) [1, 28]. While they form a natural extension of
classical object detection, these tasks assume that the ob-
jects of interest are visible in the image thus boiling them
down to just localization, and not true object detection.

In this paper, we propose a bridge between these two
types of tasks that we term Contextual Phrase Detection
(CPD). In CPD, models are provided with one or more
phrases that may be part of a larger textual context; the
model must detect all instances of each phrase if and only
if they are in accordance with the context defined by the
full sentence. For example, given a sentence “cat on a ta-
ble”, we require the model to predict boxes for any cat and
table where there is a cat on the table, and for no other
object (including other cats or tables that may exist in the
image; see Figure 1d). Crucially, and differently from REC
and phrase grounding, we do not assume a priori that all
phrases are groundable. Relaxing this assumption tests the
model’s ability to refrain from predicting boxes if no ob-
ject satisfies the constraints specified by the whole sentence.
This can be seen as a true generalization of the object de-
tection task, since proficiency in both localization (where
the objects are) and classification (is the mentioned object
present?) are required to solve the task. CPD opens the door
to evaluating models’ detection capabilities in a truly flexi-
ble way: instead of being constrained by the vocabulary, we
can now benchmark the detection of anything that can be
described in free form text.

To support the evaluation of this novel task, we re-
lease TRICD, a human-annotated evaluation dataset of 2672
image-text pairs having 1101 unique phrases associated
with a total of 6058 bounding boxes. An important re-
quirement for accurately measuring the model’s ability to
determine if an object specified by a phrase is present in the
image is having explicit negative certificates for a phrase
given an image. We extend the previous efforts towards
open-ended detection [53] with this added constraint. It is
intractable to obtain negative certificates for all the phrases
in all the images, hence we follow the trend in large-

(a) Is a person rowing in the river? (b) Is there a baseball bat?

Figure 2. Questions where SOTA VQA models answer “yes”.

vocabulary detection benchmarks [19] and take a federated
approach: for each positive phrase, we carefully select a re-
lated “distractor” image in which the target phrase does not
occur. The main hurdle lies in the procurement and verifi-
cation of such negative instances, especially those that can
truly test a model’s discriminative abilities. We emphasize
finding challenging negatives by ensuring that the distrac-
tor image shares some core traits with the positive one (for
example, having a similar scene).

Our experiments on TRICD demonstrate that state-of-
the-art (SOTA) multimodal systems that achieve impressive
performance on numerous downstream tasks (e.g. REC
[16, 27, 37, 66, 75], VQA [2, 66, 67], and phrase ground-
ing [16, 27, 37, 75]), still demonstrate a lack of robustness
when presented with more confusing or ambiguous image-
text pairs. We find that models often misidentify objects
when they appear in surprising contexts or hallucinate non-
existent objects depending on their surroundings. This find-
ing is reminiscent of hallucination phenomena in image
captioning systems [57]. For example when asked “Is there
a person rowing a boat in the river?” about Fig 2a, and “Is
there a baseball bat?” about Fig 2b, SoTA VQA models
like FIBER, OFA and Flamingo-3B all answer “yes”. CPD
requires predicting bounding boxes, which allows a more
fine-grained understanding of reasoning processes and fail-
ure modes of VL models.

We show that there is a large performance gap (∼10
points) between the evaluated models’ performance on
TRICD compared to benchmarks like GQA [25] and
Flickr30k [54] when compared in terms of F1-score on bi-
nary questions and phrase grounding recall@1 respectively,
indicating that our dataset is challenging. On the CPD task,
the best model achieves 21.5 AP on TRICD. We examine
failure cases and find that there is substantial room for im-
provement in SoTA models’ abilities to understand contex-
tual cues. We hope that TRICD serves to better measure
progress on building visual understanding models having
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fine-grained spatial and relational understanding.

2. Related Datasets and Benchmarks
The datasets available to us largely determine the capa-

bilities with which we can equip our models and provide
a means for measuring progress. Seminal works introduc-
ing datasets like Imagenet [13], COCO [39] and Flickr30k
[72] drove forward research along several axes such as
large scale image classification, classification and localiza-
tion of objects in images, prediction of segmentation masks,
and image-text retrieval. In this section we describe some
datasets and associated evaluation benchmarks that are the
most related to our goals and those which as well as those
which informed several of our design choices.

Visual Grounding. The task of visual grounding con-
sists of predicting bounding boxes corresponding to a plain
text caption. There are two main variants of this task:
Phrase grounding, which involves predicting boxes for
each noun-phrase of a caption and Referring Expression
Comprehension (REC), which involves predicting a single
bounding box corresponding to the full sentence. Phrase
grounding is evaluated on the Flickr30k Entities dataset
[54], which consists of 30k images annotated with 5 cap-
tions having bounding boxes for each noun phrase. There
are several datasets for REC, such as RefCOCO, Ref-
COCO+ [28] and RefCOCOg [47]. More recently, Ref-
Adv [1], an adversarial split of the RefCOCOg dataset was
introduced, probing for the model’s sensitivity to word or-
der. Here we stress the fact that for visual grounding, it is
assumed that the phrases being queried do occur in the im-
age. On the contrary, our proposed task (CPD) is harder
since it involves a preliminary step of checking whether the
phrase appears in the image. Current state-of-the-art mod-
els have come close to just 10% error rates on Flickr30k
Entities (see Table 5), and perform similarly well on REC
datasets. It has not been explored whether these excellent
grounding abilities transfer to good detection performance
in generalized CPD.

LVIS. With more than a thousand categories, LVIS [19]
is a detection and segmentation dataset that enables training
and evaluation of models on an order of magnitude more
concepts than previously possible. Due to the Zipfian dis-
tribution of categories in natural images, annotating data
and evaluating models on a large scale vocabulary comes
with inherent challenges. To address those, [19] introduced
the concept of a federated dataset, where each category is
annotated only on a subset of images. Our work can be
seen as the natural extension of this effort towards evaluat-
ing detection performance on an ever-growing vocabulary.
By replacing categories with contextual phrases, we seek to
evaluate detection of anything described in plain text.

Phrase Detection. Recently, several works [53, 77] pro-
posed an evaluation task closely related to ours in which

given a query phrase, the goal is to identify every image re-
gion associated with that phrase within a given dataset of
test images. Contrary to our work, they do not consider
context, but only the phrases themselves, thereby limiting
the aspects of visual reasoning that can be evaluated (eg.
complex relations as in Fig. 1). More importantly, the eval-
uations in [53, 77] rely on existing datasets such as Visual
Genome [30] which provide regions annotated with short
captions and Flickr30k Entities [54], which extracts phrases
from captions. These datasets do not provide an explicit
negative certificate for phrases. Rather, they rely on an im-
plicit signal: if a phrase is not explicitly described in an im-
age — up to synonym replacement — then it is considered
a negative. However, we argue that obtaining reliable neg-
atives this way is unsatisfactory. Without additional anno-
tations, it is often impossible to determine whether a phrase
is a true negative. If we consider an image where the phrase
“cat” occurs, since it is under specified, one cannot ascer-
tain whether the phrase “black cat” is a positive or a neg-
ative for this image. Further, since neither VG regions nor
Flickr30k captions (which tend to focus on the most salient
objects) are exhaustive, it is trivial to think of an image-text
pairing where an object is in the background of a scene but
not mentioned in the caption. This again defeats efforts to
certify if a phrase is indeed a negative. By contrast, in our
dataset we focus on collecting explicit negative certificates,
thereby allowing robust detection evaluation.

Winoground [64] evaluates model’s visio-linguistic un-
derstanding by asking them to match the correct pairs given
two images and two captions where there are 800 correct
and 800 incorrect pairings. The difficulty of this task lies in
the fact that the two captions use the same set of words but
differ in word order, and most SOTA models currently per-
form barely better than chance on this dataset. We extend
these annotations by turning them into a CPD dataset.

Attribute Prediction. Closely related to our task, at-
tribute prediction probes models’ understanding of object
properties beyond categories. Several datasets have been
proposed [18, 38, 42, 43, 46, 50, 68]. The VAW dataset [51]
is one of the largest, with 72k images annotated with 620
unique attributes for over 260k object instances. More re-
cently, the LSA dataset [52] combines images from more
sources such as Flickr30k [72], COCO [39] and OpenIm-
ages [33] to create a larger visual attribute detection dataset.

Relation Prediction. In addition to attributes, models
ought to be able to recognize relationships between objects.
Several datasets evaluate this ability, either with grounding
[9,20,34,46,55,58] or without [8,71,79]. The SVO-Probes
dataset [22] evaluates models’ understanding of relation-
ships decomposed as Subject, Verb, and Object triplets. It
carries out counterfactual testing by crafting pairs of im-
ages where only one element of each triplet varies. Perfor-
mance of SoTA models indicates that verb understanding is
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the most challenging. We draw inspiration from this coun-
terfactual design to create the relation split of our dataset.

3. Dataset design
3.1. Task definition

A CPD dataset of size N is defined as a set of pairs
{(Ii, Ci)}Ni=0 where Ii is an image and Ci is a text caption.
A set of non-overlapping phrases Pi = {Pi,j}Mi

j=0 (where
Mi is the number of phrases in Ci) is associated with each
caption. These phrases are known a priori, and each phrase
corresponds to a set of words in the caption that refer to
a particular object (e.g. “a brown cat”). We note that it
is not necessary for all noun-phrases to be represented in
Pi, and in particular it is natural to omit non-visual or non-
groundable phrases (e.g “a sunny day”). Each phrase in-
duces its own contextual detection task, where the goal is
to detect all the instances associated with the phrase while
satisfying the constraints imposed by the rest of the context.
The context can be seen as a filtering operator, as it imposes
additional criteria on the set of objects to be detected. In
particular, if some aspects of the context are violated, then
the set of candidates becomes empty and nothing should be
detected for this particular phrase. The output expected
for the contextual detection task is a set of bounding boxes
that localize the objects corresponding to the phrase, if any.
If a phrase corresponds to several distinct countable ob-
jects (e.g. “several cats”), then all the corresponding objects
should be detected with a bounding box.

3.2. Metrics

Following practice in object detection datasets [19, 39],
we choose to rely on Average Precision (AP) as our main
evaluation metric. In the following, we detail how this met-
ric is computed in the context of CPD.

For a given (Ii, Ci) pair for which the phrases of interest
Pi,j are provided, we require models to output a set of pre-
dictions, consisting of a set of bounding boxes, along with
a confidence score and the ID of the phrase that each box
corresponds to. We first sort all the predicted boxes for this
image by decreasing confidence, keep only the 100 most
confident ones, then greedily match them to the ground truth
boxes. A candidate box can be matched to a ground truth
box if and only if: (1) the ground truth box hasn’t been
matched yet (to a higher confidence candidate box) (2) the
Intersection-over-Union (IoU) between the candidate and
target is higher than a threshold τ and (3) the predicted
phrase ID matches the phrase ID of the target. After the
matching, all unmatched targets become False Negatives
(FN) and unmatched predictions are False Positives (FP).

Following this, we obtain the Precision-Recall curve
over the whole dataset, and measure the area under the
curve, which gives us the Average Precision. Following the

COCO protocol, we compute AP at 10 different IoU thresh-
olds τ , linearly spaced in [0.5, 0.95], and average them.

The main difference with a standard detection task is
that when the task involves a fixed set of classes of interest,
the metric usually involves computing a different Precision-
Recall curve for each category, then averaging the resulting
APs, yielding a Mean Average Precision (mAP). By con-
trast, in CPD each phrase and its associated context induces
its own detection target. Since we usually have only one
datapoint where a given phrase (taking into account its con-
text) is positive (i.e. it has some associated ground-truth
boxes) and one where it is negative (we guarantee that there
is no occurrence of it in the image), computing the AP us-
ing only these two datapoints would be impractical since
it would be very unstable. For this reason, we use phrase
IDs only during the matching process and ignore them when
computing a single PR curve for all phrases in the dataset.

4. Dataset construction

We rely on two main sources for the images:

Winoground [64]: The Winoground dataset consists of 800
images with an associated sentence. All the datapoints work
in pairs, where the two sentences in the pair are semantically
similar, often even consisting of the same sub-words (eg.
“fire truck” and “truck fire”). The images were obtained
from a commercial image bank (Getty) and licensed for re-
search purposes. Due to the nature of the collection process,
the images are particularly adequate to test understanding
of a specific concept with minimal confounding factors.2

However, the image distribution is skewed towards aestheti-
cally pleasing images, with generally low clutter and overall
clear salient objects.

COCO [39]: Additionally, we seek a more “natural” im-
age distribution to measure performance in settings that
are closer to real-world images. We opt to use images
from COCO: overall, the images are more diverse in quality
and content than stock pictures, and often contain cluttered
scenes with no clear salient object.3

4.1. Annotation process

We aim to construct a dataset that is organized into pairs
of visually related datapoints where image pairs share some
core traits (for example, having a similar scene). Given
these pairs, if (I0, C0) is the first image and its associated
caption, and (I1, C1) is the related datapoint, we aim to use
the caption C0 as a positive target for I0 and as a negative
target for I1 and vice versa.

2Stock pictures often come in series where the actors exchange roles,
while the situation stays the same. Annotators had access to the Getty
Images API, allowing precise search queries to select the related image.

3To avoid train set contamination, we obtained permission from the
COCO committee to annotate images from the test set.
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Giraffe drinking 
from a 
container.

Giraffe eating 
from a 
container.

  1   2   5  4VerificationSpotting Retrieval  3 Construction Box Annotation

Figure 3. Annotation Process: ¬: Spot images with interesting concepts;  Verify and score spotted images; ® Identify contextually
similar images with different concepts; ¯ Construct captions, extract noun phrases; ¯ Annotate bounding boxes for noun phrases.

4.1.1 COCO split

We illustrate our annotation process for the COCO data in
Figure 3 and describe each step below.
¬ Spotting: The annotators are presented with random im-
ages from the target set of images.4 They are asked to list
any surprising object or relationship in the image. Ob-
jects are defined as surprising when they are considered
out-of-context in the given image, or very uncommon. Re-
lations are considered surprising when (Subject, Verb, Ob-
ject) triplets are rare. Annotators are encouraged to pay at-
tention to non-salient elements. If no surprising objects or
relations are found, the image is discarded. Each image is
presented to at most one annotator. Approximately 5% of
the images are retained in this step.
Verification: For each image that was spotted in ¬, a
different set of annotators is asked to rate the images on
a likert scale from 0 to 5. We ask the raters to filter out any
ambiguous or non-groundable proposal. We ensure each
proposal receives ratings by 3 annotators; we discard those
with a score lower than 2.5. Overall, 50% of the candidate
datapoints are discarded in this stage.
® Retrieval: In the retrieval stage, given a source image I0
and an associated query C0, the annotators are required to
find a related image I1 and construct a query C1, such that
C1 occurs in I1 but not I0 and vice versa. Crucially, we
opt to entirely abstain from using any sort of multimodal
search engine or retrieval system to select the related pic-
tures. In doing so, we avoid inheriting potential biases or
blind spots from such a system. Instead, we give the annota-
tors access to an image only retrieval system, based on Con-
vNext [44] embeddings. This provides the annotator with
the 60 images closest to the source image. Alternatively,
the annotator can upload an image found by any means (eg
by searching the internet), and this image will be used to

4Test2017 for the test set, Val2017 for the validation set.

retrieve the 60 closest images in the dataset.5 For relation-
based queries, we further impose the constraint that only
one of the Subject, Verb, or Object differs in C0 and C1.
¯ Construction: Overall, we ask annotators to craft hard
negatives, either by finding objects and relations that would
be more likely given the context, or by finding visual dis-
tractors or closely related categories. Next, we automat-
ically extract the noun phrases from each caption using
spacy.io [24]. Finally, all data points obtained undergo a
last manual quality verification step, to correct spelling mis-
takes and ensure the validity of the queries, especially the
negative pairs, which tend to be wrong in subtle ways.
° Box Annotation: Lastly, to obtain bounding box anno-
tations, we rely on Amazon SageMaker and Amazon Me-
chanical Turk (AMT). Each phrase constitutes its own task
(one HIT), where we provide the workers with the image
and the full sentence, along with an indication of the target
noun phrase. The price per HIT is set according to the com-
plexity of the image, and we ask three workers to annotate
each image.6 Finally, we reviewed the annotated bounding
boxes using Label Studio [3], and manually improved the
tightness of the bounding boxes. We do this to ensure high-
quality boxes that can be used for evaluation at high IoU
threshold, similar to mainstream detection datasets [19,39].

4.1.2 Winoground split

For Winoground the process is slightly simpler given that
instances are already grouped by semantically similar im-
age and caption pairs. Therefore, we skip steps ¬-® of
Figure 3. However, in ¯ we perform a manual filtering step
to check whether, in a given pair, both negative pairs are in-

5Note however, that these uploaded images are only a means of retriev-
ing similar images in the target dataset; the uploaded images are discarded
subsequently.

6See the Appendix for screenshots of the annotation interface and de-
tails about the annotation worker wages.
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lego robot | landline telephone lego robot | landline telephone

Figure 4. An example image-text pair from the COCO objects split
of our validation set. The first image is a positive for the first text
and negative for the second text and vice versa.

deed valid, i.e. C1 does not appear in I0 and C0 does not
appear in I1. In a minority of cases, we slightly reformulate
the sentences, either to make the detection target unambigu-
ous, correct typos from the original dataset, or ensure that
the negative pairs are valid. We also manually verify their
correctness, and filter those that are not groundable (e.g. “a
sunny day”). The ones that cannot be easily modified to
fit our constraints are filtered7. We follow with extracting
noun-phrases ¯, and annotating boxes °.
4.2. TRICD dataset statistics

After all these steps, we end up with 2672 image caption
pairs having 1101 unique phrases with 6085 boxes. De-
tailed statistics of our novel TRICD dataset can be found in
Table 1. We visualise the spatial distribution of the bound-
ing boxes across the dataset in Fig. 5a and the distribution
of number of boxes per phrase in Fig. 5b.

Stats Wino Coco Obj Coco Rel All

# Unique images 712 345 248 1293
# Unique phrases 706 311 196 1101
# Unique words 874 371 354 1285
# Im-cap pairs 1424 748 500 2672
# Boxes 4365 914 779 6058
Avg phrases/image 2.3 1.0 2.0 1.9
Avg boxes/phrase 2.7 2.4 1.6 2.4
Avg words/caption 9.3 1.4 5.2 6.3

Table 1. Statistics of the TRICD test set.

5. Evaluation
We aim to have a broad coverage of models for our eval-

uation, and choose models based on performance on stan-
dard detection benchmarks like COCO and LVIS, as well
as on Phrase Grounding and Referring Expression Compre-
hension. For models that are primarily focused on open-
vocabulary detection with an emphasis on large-scale pre-
training, we use OWL-ViT [48] and DETIC [78]. For mod-
els that perform text conditioned detection and have SoTA

710% of the datapoints are filtered and 20% are edited

(a) Spatial distribution of boxes (b) Number of boxes per phrase

Figure 5. Statistics of the bounding boxes in TRICD. (a) Spatial
distribution of the bounding boxes in the TRICD test set. The size
of the marker represents the size of the box. (b) Distribution of
box per phrase in TRICD across the two splits. The counts are
quantized into bins collecting all items falling between consecu-
tive limits on a logarithmic scale

Model Backbones I-T
Pairs

GND
Pairs

Obj
Det

MDETR RoBERTa - ENB5 [40, 63] 0 1.3M 0
GLIP-T BERT - Swin [14, 41] 0 1.3M 600K
GLIP-L BERT - Swin [14, 41] 0 27M 9.8M
FIBER RoBERTa - Swin [40, 41] 4M 1.3M 600k
DETIC CLIP - CLIP [56] 400M 0 100k
OWL-ViT CLIP - CLIP [56] 400M 80k 2.5M
Flamingo Chinchilla - NFNet [5, 23] 1.9B 0 0
OFA BART-ResNet152 [21, 35] 20M 3.2M 2.98M

Table 2. Architecture of the evaluated models and pre-training data
size, in Image-Text (I-T) pairs, Grounded (GND) Image-Text pairs
and images from Object Detection datasets

performance on visual grounding, we use MDETR [27],
GLIP [37] and FIBER [16]. We provide a brief overview
of these models.8

MDETR is an end-to-end object detection pipeline built on
DETR [6] and conditioned on free-form text. It predicts
bounding boxes and which words in the input caption they
correspond to. MDETR has not been trained on negative
examples (e.g. through object detection data) and hence is
expected to perform poorly on the negatives in our dataset.
GLIP casts object detection as a grounding task and incor-
porates both detection and grounding data in its training.
FIBER extends GLIP and leverages coarse-grained image-
text pre-training for subsequent fine-grained image under-
standing by having a fused backbone architecture that in-
tegrates the image and text modalities deeper in the model
compared to MDETR or GLIP.
DETIC is an open-vocabulary detector that uses CLIP [56]
embeddings to encode the class names. It leverages a mix-
ture of box-annotated data as well as image-level annota-

8For details please see the Appendix §G and Table 2.

6



TRICD

Model Wino
COCO
objects

COCO
relations All

Grounding models

MDETR 10.1 3.9 20.4 10.7
GLIP-T 14.7 22.5 25.1 16.8
GLIP-L 18.1 26.9 28.6 20.1
FIBER 19.1 25.3 31.6 21.5

Open vocabulary detection models

OWL-VIT 6.3 13.7 16.3 7.9
DETIC 8.7 27.0 19.7 11.6

Table 3. Average Precision (AP) score on subsets of TRICD

tions from ImageNet, with a weakly-supervised loss.
OWL-ViT also relies on CLIP, relying on a very large
VIT [15]. During fine-tuning, it uses object detection
datasets to train a localization head, using a matching loss
similar to DETR [6], while the classification relies on CLIP.

5.1. Results

We report results on TRICD in Tab. 3 using the mean
average precision (mAP) metric calculated as discussed in
§3. On the VQA formulation of the task we report results
in Table 4 using accuracy and macro-F1 score. We also
report performance on each split, as they have different data
properties and distributions (as seen in Table 1).

5.2. Discussion of results on TRICD

COCO split We break down performance on the COCO
split in Table 3 in terms of the surprising object (COCO ob-
jects) and surprising relations (COCO relations) splits. We
expect models that are trained on detection data to perform
well on the COCO objects split, as these datasets also in-
clude negatives. The COCO relations split probes for mod-
els’ understanding of relations, which is hard for models
that are trained only on detection data. As per our hypothe-
sis, MDETR, trained solely on grounding data, performs the
worst on COCO objects, while DETIC, which is trained on
web-scale detection data, performs the best. On the COCO
relations split, we see FIBER performing the best while de-
tection only model OWL-ViT performs the worst.
Winoground split On average the number of words in the
caption per image in Winoground is 8.8 compared to 1.4
and 5.2 in COCO objects and relations, respectively. On
this split, it is expected that grounding models would have
an advantage and we see that indeed FIBER and GLIP-L
have the best performance.

Overall, the FIBER model, which is trained in a two
stage manner on image-text data and then on image-text-
box data, seems to perform the best, outperforming bigger
models trained on more data such as GLIP-L and object de-
tection models like DETIC and OWL-ViT.

(a) polar bear sleeping (b) polar bear sleeping

Figure 6. Even the best performing models struggle when the verb
changes between the two instances. Predictions shown here are for
the FIBER model for the query phrase “polar bear sleeping”: the
model is insensitive to the fact that the bear in (b) is “stretching”
and not “sleeping”, and predicts a box with high confidence.

5.3. How discriminative is the dataset?

Given that we are proposing an evaluation benchmark,
we are interested in having a measure of how well the
dataset can tell apart the performance of two given mod-
els. We approximate this by randomly sampling a subset of
90% of the dataset, and evaluating the AP of our models on
this subset. By repeating this process for 100 independent
subsets, we obtain an estimate of the standard deviation of
our metric, which we find to be around 0.5 AP. This can be
considered the minimal performance gap between models
that allows to conclude with confidence that a given model
is better than the other. Note that in Table 3, the AP gap
between any pair of models is higher than 0.5.

6. Dataset difficulty analysis
In this section we explore in more depth what makes our

dataset hard for SoTA models. The CPD task can be decom-
posed in two sub-tasks: first a classification task to assess
whether the target phrase is visible in the image, then a lo-
calization task to ground it. If a model or combination of
models is able to perfectly solve both tasks, then it will per-
fectly solve CPD. We evaluate SOTA models on both sub-
tasks and compare to performance on existing datasets. We
show that both sub-tasks are harder than previously avail-
able tasks of the same nature.

6.1. Classification subtask (TRICD-VQA)

To evaluate the classification subtask, we pose it as a
binary VQA task, where we ensured that all questions are
well-formed.9

Models We use SoTA models of various sizes and scale
of training data: FIBER [16], OFA [66] and Flamingo [2].
FIBER We use the coarse-grained model pretrained on 4M
image-text pairs with image-text matching/contrastive and
masked language modeling losses.
OFA trains a sequence-to-sequence model that is trained on
image-text, grounded image-text, object detection data as

9For details on our question generation process see Appendix C.2.
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TRICD-VQA GQA

Model Wino
COCO
objects

COCO
relations All

“Exists”
Testdev

Models fine-tuned on VQA

OFA 54.3 71.7 67.7 62.0 77.2
FIBER 58.5 75.4 74.7 66.7 74.8
Flamingo3B 51.7 75.3 74.2 63.3 -

Model only pre-trained on general image-text data

Flamingo80B 48.2 56.4 52.3 52.1 -

Table 4. F1 scores of SOTA models on TRICD-VQA compared to
a balanced sample of “verify object” GQA questions.

well as language only data. It reformulates grounding as a
sequence generation task, using ideas from Pix2Seq [10].
Flamingo uses frozen pre-trained vision and language mod-
els, and only trains adapter layers to handle sequences of
arbitrarily interleaved visual and textual data. It is trained
with a sequence modelling objective on web-scale data [36]
and displays impressive zero shot and few shot capabilities.

Comparison dataset We compare performance on our
dataset to a subset of the GQA dataset [25], one of the most
challenging question answering datasets where models still
lag behind human performance. None of the VQA models
we report on have been trained on it, which makes it a fair
zero-shot transfer performance. We filter the subset of ques-
tions in GQA that are simple yes/no questions asking about
the existence of an object in the scene. There are 23185
such questions in the GQA testdev set from which we ran-
domly sample a balanced set of 5000 total question. Note
that, by design, TRICD-VQA is balanced.

Results On TRICD-VQA, FIBER achieves the best per-
formance on all TRICD splits while all models tend to
struggle most on the Winoground split. This is expected,
since Winoground poses a challenge for models unable to
identify when queried objects are present in the image, but
not in the correct context specified by the relation. For all
VQA fine-tuned models, around 60-70% of false positives
occur on the Winoground split with the remaining false pos-
itives being roughly 10% more likely to come from COCO
relations than COCO objects. Across the models we tested,
around 50 − 60% of false negatives can also be attributed
to Winoground while the remaining false negatives are at
least twice as likely to come from the COCO objects splits
versus COCO relations. This again confirms our hypothesis
that models currently under-predict the presence of surpris-
ing or out of context objects.

Compared to GQA, there is a significant gap in perfor-
mance for the model we evaluated, from 8% for FIBER
to 15% for OFA. This indicates that the classification sub-
task of our dataset is harder than previously benchmarks.
Winoground is by far the most difficult split, and model per-
formances is close to chance.

TRICD-Grounding Flickr30k

Model Wino
COCO
objects

COCO
relations All Test

Grounding models

MDETR 75.8 45.0 80.0 72.0 84.3
GLIP-T 70.6 62.7 82.2 71.7 85.7
GLIP-L 76.2 71.7 86.0 77.5 87.1
FIBER 74.8 68.5 85.6 76.0 87.4

Open vocabulary detection models

OWL-VIT 62.3 72.0 78.2 66.9 -
DETIC 51.9 70.6 67.7 57.9 -

Table 5. Comparison of the grounding performance of SOTA mod-
els on TRICD and Flickr30k Entities. On both datasets, we report
Recall@1 under the ANY-BOX-PROTOCOL (with IoU ≥ 0.5)

6.2. Localization subtask (Grounding)

To evaluate the localization subtask, we frame it as
standard phrase grounding, which means that we exclude
any negatives from our dataset. The models evaluated are
the same as in Sec. 5.1 and we compare performance on
Flickr30k Entities [54].

Metrics Following [54],we evaluate Recall@1, by using
the highest confidence box for each phrase. Following the
ANY-BOX-PROTOCOL [27], a box is considered correct if
it has an IoU higher than 0.5 with any ground truth box.

Results Overall, all models evaluated have a 10% lower
performance on TRICD compared to Flickr30k, indicating
our grounding subtask is harder than in previous datasets.
On the Winoground split, MDETR suprisingly outperforms
GlipT and FIBER, despite being smaller and trained on a
much smaller corpus. This split is the most challenging
on the linguistic aspect, and our dataset shows that this as-
pect of fine-grained visio-linguistic understanding was pre-
viously a blind-spot in existing grounding datasets. On the
COCO objects split, the models trained without object de-
tection data (MDETR) are as expected struggling the most.
However, even strong open vocabulary detection models
such as GLIP-L and OWL-VIT obtain relatively poor per-
formance on this set, which turns out to be the hardest for
the grounding models. Finally, COCO Relations is the easi-
est split for this evaluation since the grounding task is com-
paratively easier consisting of (subject, object) pairs that in-
volve common objects that tend to be unique in the image.

7. Conclusion

We presented TRICD, a new dataset to evaluate Con-
textual Phrase Detection. We believe this task is the next
natural step in the quest to evaluate ever-more flexible and
general detection systems. We demonstrate that the task
and each of its sub-tasks (localization and classification) are
challenging for current SOTA models, and we hope that this
benchmark will pave the way for building stronger models
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with better fine-grained spatial and relational reasoning ca-
pabilities.
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TRICD

Model Wino
COCO
objects

COCO
relations All

Grounding models

MDETR 44.3 30.7 50.1 43.4
GlipT 39.4 45.2 46.9 41.8
GlipL 42.4 58.5 52.3 46.8
FIBER 42.4 55.8 54.1 46.8

Open vocabulary detection models

OWL-VIT 35.4 53.7 48.5 40.8
DETIC 29.2 63.2 40.5 36.6

Table 6. Group-Recall@1 score on subsets of TRICD

A. Alternate metric

To better analyze the performance of the models, we also
report an alternative metric that we term Group-Recall@1.
To compute it, we gather all predictions for a positive data-
point (I0, C0) as well as the predictions made for the related
negative datapoint (I1, C0) where the caption is the same
but the image different. Then, for each phrase of the cap-
tion, we sort all the predictions for that phrase (both those
made for the positive and negative datapoints) by decreas-
ing confidence. We consider the model successful for this
phrase if the highest-confidence prediction was made for the
positive datapoint, and has an IoU higher than 0.5 with any
of the ground-truth boxes for that phrase.

Overall, this metric is quite similar to the Phrase Ground-
ing metric that we report in Tab. 5. The only difference is
that we consider the predictions on both the negative and
positive example associated with each phrase. It tests the
ability of the model to correctly rank predictions depending
on whether they are positive. As such, it can be seen as a
retrieval metric. Note that it doesn’t evaluate any prediction
beyond the top-scoring one, hence doesn’t assess whether
all the objects corresponding to a given phrase are detected.

The results are presented in Tab. 6. We first note that
there is a 30 points gap between the Group-Recall@1 and
the Phrase-grounding Recall@1. This indicates that the
model gets confused pretty often by the distractor image,
scoring detections higher there than in the positive one.
Some significant quantitative differences between the AP
results (Tab. 3) and the Group-Recall@1 can be observed.
The most striking one is the performance of MDETR on
the Winoground split: according to the AP metric, it per-
forms significantly worse than all the other grounding mod-
els, while according to the Group-Recall@1 metric it per-
forms the best. This indicates that MDETR has a better
intra-phrase calibration (it tends to rank positives higher
than negatives for a particular phrase), but overall worse
inter-phrase calibration (at the dataset level, positives and
negatives do not get ranked correctly, leading to poor AP).

B. Validation set

Stats Coco obj Coco relation Overall

Unique images 40 60 99
Unique phrases 43 73 114
Unique words 64 131 188
image/caption pairs 84 120 204
average phrase/img 1.0 2.0 1.6
average box/phrase 1.9 1.9 1.9
Total number of boxes 83 232 315
Average words/caption 1.6 5.0 3.6

Table 7. Statistics of the TRICD validation set.

TRICD-val

Model
COCO
objects

COCO
relations All

Grounding models

MDETR 6.9 17.8 14.1
GLIP-T 22.8 22.6 21.4
GLIP-L 30.2 26.3 26.0
FIBER 19.6 28.2 25.8

Open vocabulary detection models

OWL-VIT 9.6 12.0 11.2
DETIC 19.9 21.9 20.4

Table 8. Average Precision (AP) score on the validation subsets of
TRICD

To ease experimentation on our dataset, we provide an
additional validation set, only for the coco split of our
data. The annotation procedure is exactly the same as the
coco split of our test set, except the images come from the
Val2017 subset of coco. As a result, there may be some
overlap with some training sets of other datasets based on
COCO (eg LVIS). We report statistics of our validation
dataset in Tab. 7. Results on the CPD task are reported in
Tab. 8.

C. Details on the evaluation

C.1. Inference parameters

For evaluation on CPD, we ensure that all the mod-
els predict at least 100 bounding boxes per image
for calculation of the AP metric. For MDETR, DE-
TIC, and OWL-ViT, default configurations are suffi-
cient. For GLIP-L, GLIP-T, and FIBER, the all post-
processing thresholds must be set to 0 and config param-
eter MODEL.ATSS.PRE NMS TOP N = 3000. For
GLIP-L and GLIP-T the following config parameters must
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(a) cat next to a bowl (b) cat next to a bowl

Figure 7. Additional example of a miss-prediction by FIBER.
Here, the model is insensitive to the attribute ”next to” and pro-
duces high confidence detection in the second image, even though
the correct attribute in this case is ”inside”.

also be set: MODEL.ATSS.INFERENCE TH = 0, and
MODEL.ATSS.NMS TH = 0.6.

C.2. Converting captions to VQA format

Captions are converted into questions using the NLTK
[45] and Inflect packages for part of speech (POS) tagging,
followerd by manual verification. For the Winoground split,
a mixture of common pattern matching (i.e. a sentence
beginning with “there is” can usually be converted into a
question by simply switching the word order to ”is there”)
and POS tagging was used. However, given the complexity
of some Winoground phrases, it was necessary to manu-
ally generate custom questions for 184 out of total phrases.
For the COCO split, since many phrases are a single word
or short phrase, it is straightforward to systematically con-
vert these into questions. A few question words are applied
based on the POS of the first word in the sentence. For in-
stance, if the first word is a singular noun, the question is
formed as “Is there a” + phrase+“?”. If the first word is an
article (“a”), the question would be generated as “Is there”
+ phrase + “?”. Additional manual verification for gram-
matical correctness was applied for both sets.

D. Dataset analysis
In Fig. 8, we give a glimpse of the content of the dataset

by computing a word clould of the individual phrases.

E. Annotation process
E.1. AWS annotation details

The Winoground images are relatively easy to under-
stand (stock images from Getty Images API). We set the
price per HIT to $0.048 as suggested by SageMaker for a
job that takes 11-13 seconds. We also run a separate job
for images that are difficult to understand or contain many
objects to be annotated per phrase, where the price per HIT
is increased to $1.20 as they are expected to take between
3 and 3.5 minutes. Given that COCO images come from a

Figure 8. Word cloud for phrases

different data distribution, having complex scenes, many of
the examples contain phrases that are difficult to find in the
image and/or obscure long-tailed concepts. We set the price
of the HIT to $0.24 for an estimated time of 23-25 seconds
per image.

E.2. Annotation Tool

Screenshots for the annotation interface along with the
instructions and settings are shown in Figs. 9 to 12.

F. Details on related datasets

Phrase Grounding The Flickr30k Entities dataset [54]
consists of 30,000 images annotated with 5 captions each,
where for each noun phrase in the caption, an associated set
of bounding boxes is provided. In Phrase Grounding, suc-
cess is defined in terms of whether the model predicts a box
with an intersection over union (IoU) of at least 0.5 with the
target box for each phrase in the dataset. The IoU threshold
of 0.5 is chosen in part because of the inherent noise in the
annotations that prevents much more stringent metrics. The
metric that is commonly used to evaluate performance on
this task is the Recall @k metric, with k = 1, 5 and 10 being
the slack in the number of boxes that the model can predict
before predicting the correct box (when ranked in terms of
confidence). An important point to note, is that during the
task of Phrase Grounding, it is assumed that the phrases
being queried do necessarily exist in the image. Current
state of the art models such as MDETR [27], GLIPv1 [37],
GLIPv2 [76], FIBER [16] and PEVL [70] have come close
to just 10% error rates on this dataset. 10 While this could
imply that these models have extremely good grounding
abilities, in reality we find that when queried with negative
phrases, the models perform terribly, leaving much to be
explored in the direction of models that possess true visual
understanding abilities.

10which has been reported to be close to the upper bound according to
analysis on dataset noise carried out in [27]
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(a) Worker wages and task timeout settings (b) Set up for the annotation interface

Figure 9. Illustration of the settings for the bounding box annotation tool (Sage Maker)

Referring expression comprehension (REC) The REC
task involves returning a bounding box for each referring
expression that uniquely identifies an object, given an im-
age. When predicting a bounding box, the model has to
consider the relative spatial information of other objects in
the image of the same type as well as make visual com-
parisons to similar objects, to disambiguate between them.
This probes the model’s attribute and spatial understanding
abilities. RefCOCO, RefCOCO+ [28] and RefCOCOg [73]
are large scale datasets collected on natural images from
the COCO dataset [39] with on the order of 100k expres-
sions per dataset. The metric that is used to evaluate on
this task is the accuracy at IoU threshold 0.5, where a true
positive is defined as a bounding box that has at least IoU
0.5 with the target ground truth box for each referring ex-
pression. Current state of the art VL systems have close
to 90% accuracy on these datasets. The expressions used to
describe the objects are often limited in vocabulary and very
short in length. The Referring Expression Generation task is
the converse task of predicting a natural language desription
given an image and a bounding box, and common metrics of
evaluation are BLEU, METEOR and ROUGE. Ref-Adv [1]
is a more recent adversarial split of the RefCOCOg dataset
which probes for the model’s sensitivity to word order in
the referring expression.

Winoground Closely related to the topic of models being
insensitive to word order, is the Winoground dataset [64]
consisting of 800 unique captions and images. Here the goal

is to match the correct pairs given two images and two cap-
tions on this dataset having 800 correct and 800 incorrect
pairings. The difficulty of this task lies in the fact that the
two captions use the same set of words, but differ in word
order. In a subset of the dataset, the two images are also
taken from the same scene which further challenges models
trying to discriminate the correct pairs. The metrics used
by [64] to measure such visio-linguistic compositional rea-
soning are image score, which measures whether a model
can select the correct image, given a caption and text score
which measures the converse. They also use a group score
which takes into account both the of the previous scores.
Most SOTA models currently perform barely better than
chance on this dataset. While proposed as a fine-grained
visual understanding task, the matching of images and text
provides limited signal in uncovering the models ability to
understand the complex compositional reasoning required
to solve this task, which inherently requires knowledge of
objects and their relations. In Sec §4 we describe our pro-
posal to more deeply evaluate the models for compositional
reasoning though our dataset.

Attribute Prediction The VAW dataset [51] consists of
72,274 images from the Visual Genome dataset annotated
with 620 unique attributes for over 260k object instances,
that represent a long tail of object-attribute pairs supersed-
ing previous attempts in terms of size and coverage. Dif-
ferently from the phrase detection dataset [53], VAW is a
federated dataset that provides certificates for negatives per
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Figure 10. Illustration of the instructions provided to workers for bounding box annotation.
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Figure 11. Interface of the spotting tool, where annotators must flag images which have interesting objects or relations

object. This allows for accurate evaluation of the models
ability to predict the presence or absence of each attribute,
taking only into account the relevant positive and negative
objects per attribute. More recently, the LSA dataset [52]
combines images from more sources such as Flickr30k [72],
COCO [39] and OpenImages [33] to create a larger visual
attribute detection dataset

Relation Prediction In addition to attributes, another im-
portant capability of visual understanding models is the
ability to recognize relations. HICO [8] and VRD [46]
are relation prediction datasets which involve classifying
the detected relationship. In HICO the task is to classify
the interaction of a human with an object, and VRD re-
quires classification of the relationship between two ob-
jects. Both of these have a limited set of verbs and objects.
The SVO-Probes dataset is an evaluation benchmark hav-
ing 48,000 image–text pairs designed to probe for Subject,
Verb, and Object understanding in image-text models. It
consists of image-text pairs covering 421 verbs that are con-
sidered to be visual and extracted from the Conceptual Cap-
tions dataset [60]. The difference between the positive and
negative image is either in the subject, verb or object and the
task is to correctly classify both positive and negative pairs.
The performance of SoTA models on this dataset suggests
that models struggle on verbs, as compared to recognizing
other parts of speech. Other datasets such as V-COCO [20]
and ImSitu [71] probe for verbs but not with negative cer-
tificates as in SVO-Probes.

G. Models used for evaluation

MDETR is an end-to-end object detection pipeline built
on DETR [6] and conditioned on free form text. It predicts
bounding boxes and which words in the input caption they
correspond to. MDETR predicts a set of bounding boxes
given an image and a text query, as well as a distribution for
each predicted box over the tokens of the input text used to
query the model. We evaluate MDETR-ENB5 which has an
EfficientNet-B5 vision backbone and RoBERTa as the text
encoder. It is trained on 1.3M image-text pairs from COCO
[39], VG Regions [30], GQA [25] and Flickr30k [54], to-
gether referred to as GoldG. This model has not been trained
on negative examples (e.g. through object detection data)
and hence is expected to perform poorly on the negatives in
our dataset.

GLIP casts object detection as a grounding task and in-
corporates both kinds of data in its training. The GLIP-L
model that we evaluate is trained on data including 4 object
detection datasets (Objects365 [59], OpenImages [33], Vi-
sual Genome [30] and ImageNetBoxes [32], 24M pseudo-
annotated image-text pairs from the web, CC12M [7], SBU
captions [49], as well as GoldG from MDETR. GLIP-L uses
a Swin-Large [41] as the vision backbone and BERT as the
text encoder. GLIP-T is trained on GoldG and Objects365
and uses a Swin-Tiny as the vision backbone.

FIBER extends GLIP and leverages coarse-grained
image-text pre-training for subsequent fine-grained image
understanding by having a fused backbone architecture that
fuses the image and text modalities deeper in the model
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Figure 12. Interface of the construction tool. Given an image an a caption, annotators must find a related image where the given caption
does not occur, and construct a positive caption for this second image that conversely does not occur in the first image

compared to MDETR or GLIP. This allows a large amount
of parameters to be initially trained on image-text data, pro-
viding a good initialization for the fine-grained training of
the model and reducing the requirement for box annotated
data. The model we use is based on Swin-Base [41] and
RoBERTA [40], and is trained on the Gold-G data from
MDETR, object detection data from Objects365 [59] as
well as image-text pairs from COCO, VG [30], CC3M [60]
and SBU captions [49].

DETIC is an open-vocabulary detector that uses
CLIP [56] embeddings to encode the class names. It lever-
ages a mixture of box-annotated data as well as image-level
annotations from ImageNet, with a weakly-supervised loss.

OWL-ViT also relies on CLIP, relying on a very large
VIT [15]. During fine-tuning, it uses object detection
datasets to train a localization head, using a matching loss
similar to DETR [6], while the classification relies on CLIP.
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trashcan cover

exhaust

basketball court

toll camera

naked torso

vase

Figure 13. Random examples from the object split of the val dataset
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penguin wearing a napkin as a bib

donut wrapped in a napkin

animal pulling toilet paper off the roll

animal sitting on a toilet lid

oven in a dumpster dial inside an oven

Figure 14. Random examples from the relation split of the val dataset
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